Differential effects of whisky brands on human gut microbiome and fecal metabolome

Priyanka Sarkar, M. C. Kalita and Mojibur R. Khan

Life science division, IASST, Guwahati, Assam, INDIA

Abstract

The gut bacteria have significant impact on human physiology and are influenced by dietary habit [1]. Apart from normal diet, alcoholic beverages have also been shown to influence gut microbial makeup. The wine polyphenols have been linked to increase the beneficial bacteria in the gut after 4 weeks of consumption [2]. Consumption of alcoholic beverages for longer period (>10 years) has also been correlated to detrimental gut bacterial dysbiosis [3]. The contrasting effects of alcoholic beverages in these two studies necessitate further research. Globally, 45.7% of alcoholic drinkers are spirit drinkers with India having the highest (71%) [4]. In India whisky is preferred by most of the drinkers and 1400 million liters of whisky was consumed in India in the year 2012 [5]. Till date, no study has been reported to understand the effect of long-term consumption of different types of whisky on gut bacterial profile. In this purview a pilot study of gut bacterial and metabolite profile was performed between the whisky drinker (n=18) and non-drinker (n=8) along with rice beer drinkers (n=3). PCR-denaturing gradient gel electrophoresis (PCR-DGGE) coupled with next generation sequencing (NGS) analysis on illumina miseq platform revealed decrease in gut bacterial diversity in the drinkers compared to the non-drinkers. The whisky types have differential effects on the GBP. The GBP of whisky type 1 drinkers had higher abundance of Clostridiaceae and Enterobacteriaceae (fold change log 2: 3.33 & 3.1537, respectively; p<0.002) in comparison to the non-drinker group, while the type 2 whisky drinkers had increased abundance of Lactococcus and Streptococcus (fold change log 2: 9.1827 & 4.2986; p<0.002) compared to the non-drinker group. The butyric acid producing genera, Ruminococcaceae was found to be decreased in both the whisky drinking cohorts (fold change log 2: -1.5449 & -2.7327, respectively; p<0.002). Short-chain fatty acids (SCFA), mainly butyric acid, acetic acid and propanoic acid were found to be decreased in both the whisky drinker groups in comparison to the non-drinkers (p<0.05). The differential effects of whisky types with equal alcohol content indicate that constituents of whisky other than the alcohol also influence the gut bacterial composition.

References
