Emerging technologies to achieve oral delivery of GLP-1 and GLP-1 analogs for treatment of type 2 diabetes mellitus (T2DM)

Authors Affiliation(s)

  • 1Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London Health Sciences Centre, University of Western Ontario, London, Ontario N6A 5A5, CANADA
  • 2Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, CANADA
  • 3Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, PR. CHINA

Can J Biotech, Volume 1, Issue 1, Pages 1-10, DOI: https://doi.org/10.24870/cjb.2017-000107

Received: Mar 16, 2017; Revised: Apr 21, 2017; Accepted: Apr 22, 2017

Abstract

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal (GI) peptide hormone that stimulates insulin secretion, gene expression and β-cell proliferation, representing a potentially novel and promising therapeutic agent for the treatment of T2DM. DPP-IV-resistant, long-acting GLP-1 analogs have already been approved by FDA as injectable drugs for treating patients with T2DM. Oral delivery of therapeutic peptides and proteins would be preferred owing to advantages of lower cost, ease of administration and greater patient adherence. However, oral delivery of proteins can be affected by rapid enzymatic degradation in the GI tract and poor penetration across the intestinal membrane, which may require amounts that exceed practical consideration. Various production strategies have been explored to overcome challenges associated with the oral delivery of therapeutic peptides and proteins. The goal of this review is to provide an overview of the current state of progress made towards the oral delivery of GLP-1 and its analogs in the treatment of T2DM, with special emphasis on the development of plant and food-grade bacterial delivery systems. Recently, genetically engineered plants and food-grade bacteria have been increasingly explored as novel carrier systems for the oral delivery of peptide and protein drugs. These have a largely unexplored potential to serve both as an expression system and as a delivery vehicle for clinically relevant, cost effective therapeutics. As such, they hold great promise for human biopharmaceuticals and novel therapies against various diseases.

References

  1. See WHO website:www. who.int.whd/diabetes
  2. Herman, W.H. and Zimmet, P. (2012) Type 2 Diabetes: an epidemic requiring global attention and urgent action. Diabetes Care 35: 943-944. Crossref
  3. Olokoba, A.B., Obateru, O.A. and Olokoba, L.B. (2012) Type 2 diabetes mellitus: a review of current trends. Oman Med J 27: 269-273. Crossref
  4. McFarlane, S.I. (2009) Antidiabetic medications and weight gain: implications for the practicing physician. Curr Diab Rep 9: 249-254. Crossref
  5. Holst, J.J. (2012) Incretin based therapies: do they hold their promise? J Diabetes 4: 4-7. Crossref
  6. Barrera, J.G., Jones, K.R., Herman, J.P., D'Alessio, D.A., Woods, S.C. and Seeley, R.J. (2011) Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J Neurosci 31: 3904-3913. Crossref
  7. Heppner, K.M. and Perez-Tilve D. (2015) GLP-1 based therapeutics: simultaneously combating T2DM and obesity. Front Neurosci 9: 92. Crossref
  8. Kieffer, T.J., McIntosh, C.H. and Pederson, R.A. (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136: 3585-3596. Crossref
  9. Young, A.A., Gedulin, B.R., Bhavsar, S., Bodkin, N., Jodka, C., Hansen, B. and Denaro M. (1999) Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes 48: 1026-1034. Crossref
  10. Kalra, S., Baruah, M.P, Sahay, R.K., Unnikrishnan, A.G., Uppal, S. and Adetunji, O. (2016) Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future. Indian J Endocrinol Metab 20: 254-267. Crossref
  11. Marre, M., Shaw, J., Brändle, M., Bebakar, W.M., Kamaruddin, N.A., Strand, J., Zdravkovic, M., Le Thi, T.D. and Colagiuri, S. (2009) Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med 26: 268-278. Crossref
  12. Chung, S.W., Hil-lal, T.A. and Byun, Y. (2012) Strategies for non-invasive delivery of biologics. J Drug Target 20: 481-501. Crossref
  13. Bruno, B.J., Miller, G.D. and Lim, C.S. (2013) Basics and recent advances in peptide and protein drug delivery. Ther Deliv 4: 1443-1467. Crossref
  14. Kumar, T.R., Soppimath, K. and Nachaegari, S.K. (2006) Novel Delivery Technologies for Protein and Peptide Therapeutics. Curr Pharm Biotechnol 7: 261-276.Crossref
  15. Arbit, E. and Kidron, M. (2009) Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol 3: 562-567. Crossref
  16. Filpula, D. and Zhao, H. (2008) Releasable PEGylation of proteins with customized linkers. Adv Drug Deliv Rev 60: 29-49. Crossref
  17. Hinds, K.D. (2005) 'Protein conjugation, cross-linking, and PEGylation'. In Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids (Mahato RI, Ed). CRC Press, Boca Raton, Fla, USA, 119-185.
  18. Youn, Y.S., Jeon, J.E., Chae, S.Y., Lee, S. and Lee, K.C. (2008) PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagon-like peptide-1 in type 2 diabetic db/db mice. Diabetes Obes Metab 10: 343-346. Crossref
  19. Balamurugan, K., Ortiz, A. and Said, H.M. (2003) Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT system. Am J Physiol Gastrointest Liver Physiol 285: G73-77. Crossref
  20. Chae, S.Y., Jin, C.H., Shin, H.J., Youn, Y.S., Lee, S. and Lee, K.C. (2008) Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery. Bioconjug Chem 19: 334-341. Crossref
  21. Jin, C.H., Chae, S.Y., Son, S., Kim, T.H., Um, K.A., Youn, Y. S., Lee, S. and Lee, K.C. (2009) A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice. J Control Release 133: 172-177. Crossref
  22. Liechty, W.B., Kryscio, D.R., Slaughter, B.V. and Peppas, N. A. (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1: 149-173. Crossref
  23. Athanasiou, K.A., Niederauer, G.G. and Agrawal, C.M. (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17: 93-102.Crossref
  24. Joseph, J.W., Kalitsky, J., St-Pierre, S. and Brubaker, P.L. (2000) Oral delivery of glucagon-like peptide-1 in a modified polymer preparation normalizes basal glycaemia in diabetic db/db mice. Diabetologia 43: 1319-1328. Crossref
  25. Nguyen, H.N., Wey, S.P., Juang, J.H., Sonaje, K., Ho, Y.C., Chuang, E.Y., Hsu, C.W., Yen, T.C., Lin, K.J. and Sung, H.W. (2011) The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials 32: 2673-2682. Crossref
  26. Bernkop-Schnürch, A. and Dünnhaupt, S. (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81: 463-469.Crossref
  27. Sung, M.H, Park, C., Kim, C.J., Poo, H., Soda, K. and Ashiuchi, M. (2005) Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec 5: 352-366. Crossref
  28. Zhang, B., He, D., Fan, Y., Liu, N. and Chen, Y. (2014) Oral delivery of exenatide via microspheres prepared by cross-linking of alginate and hyaluronate. PLoS One 9: e86064.Crossref
  29. Liew, C.V., Chan, L.W., Ching, A.L. and Heng, P.W.S. (2006) Evaluation of sodium alginate as drug release modifer in matrix tablets. Int J Pharm 309: 25-37.Crossref
  30. Tremblay, R., Wang, D., Jevnikar, A.M. and Ma, S. (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28: 214-221. Crossref
  31. Yusibov, V., Kushnir, N. and Streatfield, S.J. (2016) Antibody production in plants and green algae. Annu Rev Plant Biol 67: 669-701. Crossref
  32. Ma, S., Liao, Y.C. and Jevnikar, A.M. (2015) Induction of oral tolerance with transgenic plants expressing antigens for prevention/treatment of autoimmune, allergic and inflammatory diseases. Curr Pharm Biotechnol 16: 1002-1011. Crossref
  33. Yao, J., Weng, Y., Dickey, A. and Wang, K.Y. (2015) Plants as factories for human pharmaceuticals: applications and challenges. Int J Mol Sci 16: 28549-28565. Crossref
  34. Park, K.Y. and Wi, S.J. (2016) Potential of plants to produce recombinant protein products. J Plant Biol 59: 559-568. Crossref
  35. Yusibov, V., Streatfield, S.J. and Kushnir, N. (2011) Clinical development of plant-produced recombinant pharmaceuticals: Vaccines, antibodies and beyond. Hum Vaccin 7: 313-321. Crossref
  36. Brandsma, M., Wang, X., Diao, H., Kohalmi, S., Jevnikar, A.M. and Ma, S. (2009) A proficient approach to the production of therapeutic glucagon-like peptide-1 (GLP-1) in transgenic plants. Open Biotechnol J 3: 57-66. Crossref
  37. Choi, J., Diao, H., Feng, Z.C., Lau, A., Wang, R., Jevnikar, A.M. and Ma, S. (2014) A fusion protein derived from plants holds promising potential as a new oral therapy for type 2 diabetes. Plant Biotechnol J 12: 425-435. Crossref
  38. Brandsma, M., Jevnikar, A.M. and Ma, S. (2011) Recombinant human transferrin: beyond iron binding and transport. Biotechnol Adv 29: 230-238. Crossref
  39. Kwon, K.C., Nityanandam, R., New, J.S. and Daniell, H. (2013) Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Plant Biotechnol J 11: 77-86. Crossref
  40. Baldauf, K.J., Royal, J.M., Hamorsky, K.T. and Matoba, N. (2015) Cholera toxin B: one subunit with many pharmaceutical applications. Toxins 7: 974-996. Crossref
  41. Jin, S. and Daniell, H. (2015), The engineered chloroplast genome just got smarter. Trends Plant Sci 20: 622-640. Crossref
  42. Zhao, L., Liao, F., Wang, C., Chen, M., Wei, A.M., Du, L.S., Ma, B.C., Hu, X.Y., Wu, Z.Q., Wang, R.J. and Li, M.G. (2009) Generation of transgenic cucumbers with expression of a ten-tandem repeat long-acting GLP-1 analogue and their biological function on diabetic rats. Chin Sci Bull 54: 4658-4663. Crossref
  43. Qunito, E.J., Jiménez, P., Caro, I., Tejero, J., Mateo, J. and Girbés, T. (2014) Probiotic lactic acid bacteria: a review. Food Nutr Sci 5: 1765-1775. Crossref
  44. Montville, T.J. and Matthews, K. (2005) Food microbiology: an introduction. ASM Press, Washington DC.
  45. Turcanu, V. and Lack, G. (2006) 'Molecular and immunological responses to food'. In Food Allergy (Maleki SJ, Burks AW, Helm RM, Eds). ASM Press, Washington DC, 83-121.
  46. Bermúdez-Humarán, L.G. (2009) Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin 5: 264-267. Crossref
  47. Mansour, N.M. and Abdelaziz, S.A. (2016) Oral immunization of mice with engineered Lactobacillus gasseri NM713 strain expressing Streptococcus pyogenes M6 antigen. Microbiol Immunol 60: 527-532. Crossref
  48. Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W. and Remaut, E. (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355. Crossref
  49. Braat, H., Rottiers, P., Hommes, D.W., Huyghebaert, N., Remaut, E., Remon, J.P., van Deventer, S.J., Neirynck, S., Peppelenbosch, M.P. and Steidler, L. (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol 4: 754-759. Crossref
  50. Carvalho, R.D., Breyner, N., Menezes-Garcia, Z., Rodrigues, N.M., Lemos, L., Maioli, T.U., da Gloria Souza, D., Carmona, D., de Faria, A.M., Langella, P., Chatel, J.M., Bermúdez-Humarán, L.G., Figueiredo, H.C., Azevedo, V., de Azevedo, M.S. (2017) Secretion of biologically active pancreatitis-associated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis. Microb Cell Fact 16: 27. Crossref
  51. Robert, S., Gysemans, C., Takiishi, T., Korf, H., Spagnuolo, I., Sebastiani, G., Van Huynegem, K., Steidler, L., Caluwaerts, S., Demetter, P., Wasserfall, C.H., Atkinson, M.A., Dotta, F., Rottiers, P., Van Belle, T.L. and Mathieu, C. (2014) Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63: 2876-2887. Crossref
  52. Takiishi, T., Korf, H., Belle, T.V., Robert, S., Grieco, F.A., Caluwaerts, S., Galleri, L., Spagnuolo, I., Steidler, L., Van Huynegem, K., Demetter, P., Wasserfall, C., Atkinson, M.A., Dotta, F., Rottiers, P., Gysemans, C. and Mathieu, C. (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122: 1717-1725. Crossref
  53. Ohkouchi, K., Kawamoto, S., Tatsugawa, K., Yoshikawa, N., Takaoka, Y., Miyauchi, S., Aki, T., Yamashita, M., Murooka, Y. and Ono, K. (2012) Prophylactic effect of Lactobacillus oral vaccine expressing a Japanese cedar pollen allergen. J Biosci Bioeng 113: 536-541. Crossref
  54. Duan, F.F., Liu, J.H. and March, J.C. (2015) Engineered commensal bacteria reprogram intestinal cells into glucoseresponsive insulin-secreting cells for the treatment of diabetes. Diabetes 64: 1794-1803. Crossref
  55. Duan, F., Curtis, K.L. and March, J.C. (2008) Secretion of insulinotropic proteins by commensal bacteria: rewiring the gut to treat diabetes. Appl Environ Microbiol 74: 7437-7438. Crossref
  56. Selle, K. and Klaenhammer, T.R. (2013) Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev 37: 915-935. Crossref
  57. Cribby, S., Taylor, M. and Reid, G. (2008) Vaginal microbiota and the use of probiotics. Interdiscip Perspect Infect Dis 2008: 256490. Crossref
  58. Zeng, Z., Yu, R., Zuo, F., Zhang, B., Peng, D., Ma, H. and Chen, S. (2016) Heterologous expression and delivery of biologically active exendin-4 by Lactobacillus paracasei L14. PLoS One 11: e0165130. Crossref
  59. Wei, P., Yang, Y., Li, T., Ding, Q. and Sun, H. (2015) An engineered Bifidobacterium longum secreting a bioactive penetratin-Glucagon-like peptide 1 fusion protein enhances glucagon-like peptide 1 absorption in the intestine. J Microbiol Biotechn. Crossref
  60. Dupont, E., Prochiantz, A. and Joliot, A. (2011) Penetratin story: an overview. Methods Mol Biol 683: 21-29. Crossref
  61. Buffie, C.G. and Pamer, E.G. (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13: 790-801. Crossref
  62. Mullard, A. (2015) Oral GLP1 analogue rounds Phase II corner. Nat Rev Drug Discov 14: 227. Crossref
  63. Merrion Pharma (2012). Novo Nordisk A/S successfully completes single dose Phase 1 trial of oral GLP-1 analogue (NN9926) using Merrion Pharmaceuticals GIPET technology. Crossref
  64. Eldor, R., Kidron, M. and Arbit, E. (2010) Open-label study to assess the safety and pharmacodynamics of five oral insulin formulations in healthy subjects. Diabetes Obes Metab 12: 219-223. Crossref
  65. Thwala, L.N., Préat, V. and Csaba, N.S. (2017) Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv 14: 23-36. Crossref
  66. Steidler, L., Neirynck, S., Huyghebaert, N., Snoeck, V., Vermeire, A., Goddeeris, B., Cox, E., Remon, J.P. and Remaut, E. (2003). Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21: 785-789. Crossref