Introduction on Foam and its Impact in Bioreactors

  1. Gabriel St-Pierre Lemieux*,
  2. Denis Groleau,
  3. Pierre Proulx

Authors Affiliation(s)

  • Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, CANADA

Can J Biotech, Volume 3, Issue 2, Pages 143-157, DOI: https://doi.org/10.24870/cjb.2019-000131

Received: Sep 5, 2019; Revised: Oct 16, 2019; Accepted: Oct 25, 2019

Abstract

Foam formation in bioreactors (fermenters) and other types of reactors is a highly interesting topic that touches several disciplines. All of the phenomena involved in foam formation have been the subject of many studies, but their relationships are still not obvious to newcomers. This review aimed to give the reader a good background for understanding the various phenomena involved in foam formation, especially in bioreactors. Hopefully, this would give the reader the tools necessary to access any needed information about foaming, a task that can be difficult without such basic knowledge.

References

  1. Höhler, R. and Cohen-Addad, S. (2005) Rheology of liquid foam. J Phys Condens Matter 17: R1041–R1069. Crossref
  2. Junker, B. (2007) Foam and its mitigation in fermentation systems. Biotechnol Prog 23: 767–784. Crossref
  3. Vardar-Sukan, F. (1998) Foaming: Consequences, prevention and destruction. Biotechnol Adv 16: 913–948. Crossref
  4. Dollet, B. and Raufaste, C. (2014) Rheology of aqueous foams. C R Phys 15: 731–747. Crossref
  5. Katgert, G., Tighe, B.P. and van Hecke, M. (2013) The jamming perspective on wet foams. Soft Matter 9: 9739– 9746. Crossref
  6. Weaire, D. and Phelan, R. (1996) The physics of foam J Phys Condens Matter 8: 9519–9524. Crossref
  7. Garrett, P.R. (2016) The science of defoaming : Theory, experiment and applications. CRC Press. ebook ISBN : 9780429145483.
  8. Plateau, J. (1873) Statique experimentale et theorique des liquides soumis aux seules forces moleculaires. Gauthier Villars, Paris.
  9. Gochev, G., Ulaganathan, V. and Miller, R. (2016) Foams. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim, Germany, 1–31. Crossref
  10. Taylor, J.E. (1976) The structures of singularities in soap- bubble-like and soap-film-like minimal surfaces. Ann Math 103: 489–539. Crossref
  11. Drenckhan, W. and Hutzler, S. (2015) Structure and energy of liquid foams. Adv Colloid Interface Sci 224: 1– 16. Crossref
  12. von Neumann, J. (1952) Metal Interfaces. American society for metal.
  13. Thomas, G.L., de Almeida, R.M. and Graner, F. (2006) Coarsening of three-dimensional grains in crystals, or bubbles in dry foams, tends towards a universal, statistically scale-invariant regime. Phys Rev E Stat Nonlin Soft Matter Phys 74: 021407. Crossref
  14. Thomson, W. (1887) On the division of space with minimum partitional area. Acta Math 11: 121–134. Crossref
  15. Brakke, K.A. (1992) The surface evolver. Experiment Math 1: 141–165.
  16. Gabbrielli, R., Meagher, A.J., Weaire, D., Brakke, K.A. and Hutzler, S. (2012) An experimental realization of the Weaire–Phelan structure in monodisperse liquid foam. Phil Mag Lett 92: 1–6. Crossref
  17. Cox, S., Weaire, D. and Glazier, J.A. (2004) The rheology of two-dimensional foams, Rheol Acta 43: 442–448. Crossref
  18. Liu, A.J. and Nagel, S.R. (2010) The jamming transition and the marginally jammed solid. Annu Rev Condens Matter Phys 1: 347–369. Crossref
  19. Dunne, F.F., Bolton, F., Weaire, D. and Hutzler, S. (2017) Statistics and topological changes in 2D foam from the dry to the wet limit. Philos Mag 97: 1768–1781. Crossref
  20. Breward, C.J.W. and Howell, P.D. (2002) The drainage of a foam lamella. J Fluid Mech 458: 379–406. Crossref
  21. Vitasari, D., Grassia, P. and Martin, P. (2016) Surfactant transport onto a foam film in the presence of surface viscous stress. Appl Math Model 40: 1941–1958. Crossref
  22. Vitasari, D., Grassia, P. and Martin, P. (2013) Surfactant transport onto a foam lamella. Chem Eng Sci 102: 405– 423. Crossref
  23. Schilling, K. and Zessner, M. (2011) Foam in the aquatic environment. Water Res 45: 4355–4366. Crossref
  24. Anazadehsayed, A. and Naser, J. (2017) A combined CFD simulation of Plateau borders including films and transitional areas of liquid foams. Chem Eng Sci 166: 11– 18. Crossref
  25. Briceño-Ahumada, Z. and Langevin, D. (2017) On the influence of surfactant on the coarsening of aqueous foams. Adv Colloid Interface Sci 244: 124–131. Crossref
  26. Verbist, G., Weaire, D. and Kraynik, A.M. (1996) The foam drainage equation. J Phys Condens Matter 8: 3715– 3731. Crossref
  27. Cilliers, J. (2006) Understanding froth behaviour with CFD. Fifth International Conference on CFD in the Process Industries, CSIRO, Melbourne, Australia. undefined
  28. Cox, S.J., Weaire, D., Hutzler, S., Murphy, J., Phelan, R. and Verbist, G. (2000) Applications and generalizations of the foam drainage equation. Proc Math Phys Eng Sci 456: 2441–2464. Crossref
  29. Weaire, D. and Hutzler, S. (2003) Dilatancy in liquid foams. Philos Mag 83: 2747–2760. Crossref
  30. Wang, Z. and Narsimhan, G. (2006) Model for Plateau border drainage of power-law fluid with mobile interface and its application to foam drainage. J Colloid Interface Sci 300: 327–337. Crossref
  31. Steffe, J.F. (1996) Rheological methods in food process engineering. Freeman Press, East Lansing, MI, USA. ISBN: 9780963203618.
  32. Ozarmut, A.O. and Steeb, H. (2015) Rheological properties of liquid and particle stabilized foam. J Phys: Conf Ser 602: 012031. Crossref
  33. Rouyer, F., Cohen-Addad, S. and Höhler, R. (2005) Is the yield stress of aqueous foam a well-defined quantity? Colloid Surf A Physicochem Eng Asp 263: 111–116. Crossref
  34. Coussot, P. (2014) Yield stress fluid flows: A review of experimental data. J Non-Newton Fluid Mech 211: 31–49. Crossref
  35. Denkov, N.D. (2004) Mechanisms of foam destruction by oil-based antifoams. Langmuir 20: 9463–9505. Crossref
  36. Kordialik-Bogacka, E. and Ambroziak, W. (2007) The relationship between polypeptides and foaming during fermentation. LWT- Food Sci Technol 40: 368–373. Crossref
  37. Alonso, S. and Martin, P.J. (2016) Impact of foaming on surfactin production by Bacillus subtilis: Implications on the development of integrated in situ foam fractionation removal systems. Biochem Eng J 110: 125–133. Crossref
  38. Umar, A., Caldwell, G.S. and Lee, J.G.M. (2018) Foam flotation can remove and eradicate ciliates contaminating algae culture systems. Algal Res 29: 337–342. Crossref
  39. Janoska, A., Vázquez, M., Janssen, M., Wijffels, R.H., Cuaresma, M. and Vílchez, C. (2018) Surfactant selection for a liquid foam-bed photobioreactor. Biotechnol Prog 34: 711–720. Crossref
  40. Alhattab, M. and Brooks, M.S.-L. (2017) Dispersed air flotation and foam fractionation for the recovery of microalgae in the production of biodiesel. Sep Sci Technol 52: 2002–2016. Crossref
  41. Chisti, Y. (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18: 420–432. Crossref
  42. Chalmers, J.J. (2015) Mixing, aeration and cell damage, 30+ years later: what we learned, how it affected the cell culture industry and what we would like to know more about. Curr Opin Chem Eng 10: 94–102. Crossref
  43. Papoutsakis, E.T. (1991) Fluid-mechanical damage of animal cells in bioreactors. Trends Biotechnol 9: 427–437. Crossref
  44. Zhang, S., Handa-Corrigan, A. and Spier, R.E. (1992) Foaming and media surfactant effects on the cultivation of animal cells in stirred and sparged bioreactors. J Biotechnol 25: 289–306. Crossref
  45. Bavarian, F., Fan, L.S. and Chalmers, J.J. (1991) Microscopic visualization of insect cell-bubble interactions. I: Rising bubbles, air-medium interface, and the foam layer. Biotechnol Prog 7: 140–150. Crossref
  46. Handa, A., Emery, A.N. and Spier, R.E. (1987) On the evaluation of gas-liquid interfacial effects on hybridoma viability in bubble column bioreactors. Dev Biol Stand 66: 241–253.
  47. Bikerman, J.J. (1938) The Unit of Foaminess. Trans Faraday Soc 34: 634–638. Crossref
  48. Rusanov, A.I., Krotov, V.V. and Nekrasov, A.G. (1998) New methods for studying foams: Foaminess and foam stability. J Colloid Interface Sci 206: 392–396. Crossref
  49. Aktas, Z., Cilliers, J.J. and Banford, A.W. (2008) Dynamic froth stability: Particle size, airflow rate and conditioning time effects. Int J Miner Process 87: 65–71. Crossref
  50. Hodge, J.E. (1953) Dehydrated foods, chemistry of browning reactions in model systems. J Agric Food Chem 1: 928–943. Crossref
  51. Chisti, Y. (1993) Animal cell culture in stirred bioreactors: Observations on scale-up. Process Biochem 28: 511–517. Crossref
  52. Hoeks, F.W., Boon, L.A., Studer, F., Wolff, M.O., van der Schot, F., Vrabel, P., van der Lans, R.G., Bujalski, W., Manelius, A., Blomsten, G., Hjorth, S., Prada, G., Luyben, K.Ch. and Nienow, A.W. (2003) Scale-up of stirring as foam disruption (SAFD)to industrial scale. J Ind Mirobiol Biotechnol 30: 118–128. Crossref
  53. Prins, A. and van’t Riet, K. (1987) Proteins and surface effects in fermentation: foam, antifoam and mass transfer. Trends Biotechnol 5: 296–301. Crossref
  54. Willenbacher, J., Zwick, M., Mohr, T., Schmid, F., Syldatk, C. and Hausmann, R. (2014) Evaluation of different Bacillus strains in respect of their ability to produce Surfactin in a model fermentation process with integrated foam fractionation. Appl Microbiol Biotechnol 98: 9623–9632. Crossref
  55. Willenbacher, J., Rau, J.-T., Rogalla, J., Syldatk, C. and Hausmann, R. (2015) Foam-free production of Surfactin via anaerobic fermentation of Bacillus subtilis DSM 10. AMB Express 5: 21. Crossref
  56. Chtioui, O., Dimitrov, K., Gancel, F., Dhulster, P. and Nikov, I. (2012) Rotating discs bioreactor, a new tool for lipopeptides production. Process Biochem 47: 2020–2024. Crossref
  57. Coutte, F., Lecouturier, D., Yahia, S.A., Leclère, V., Béchet, M., Jacques, P. and Dhulster, P. (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87: 499–507. Crossref
  58. Janoska, A., Lamers, P.P., Hamhuis, A., van Eimeren, Y., Wijffels, R.H. and Janssen, M. (2017) A liquid foam-bed photobioreactor for microalgae production. Chem Eng J 313: 1206–1214. Crossref
  59. Janoska, A., Barten, R., de Nooy, S., van Rijssel, P., Wijffels, R.H. and Janssen, M. (2018) Improved liquid foam-bed photobioreactor design for microalgae cultivation. Algal Res 33: 55–70. Crossref
  60. Vázquez, M., Fuentes, J.L., Hincapié, A., Garbayo, I., Vílchez, C. and Cuaresma, M. (2018) Selection of microalgae with potential for cultivation in surfactant- stabilized foam. Algal Res 31: 216–224. Crossref
  61. Pelton, R. (2002) A review of antifoam mechanisms in fermentation. J Ind Microbiol Biotechnol 29: 149–154. Crossref
  62. Denkov, N.D., Cooper, P. and Martin, J.-Y. (1999) Mechanisms of action of mixed solid-liquid antifoams. 1. Dynamics of foam film rupture. Langmuir 15: 8514–8529. Crossref
  63. Routledge, S.J., Hewitt, C.J., Bora, N. and Bill, R.M. (2011) Antifoam addition to shake flask cultures of recombinant Pichia pastoris increases yield. Microb Cell Fact 10: 17. Crossref
  64. Garrett, P.R. (2015) Defoaming: Antifoams and mechanical methods. Curr Opin Colloid Interface Sci 20: 81–91. Crossref
  65. Karakashev, S.I. and Grozdanova, M.V. (2012) Foams and antifoams. Adv Colloid Interface Sci 176–177: 1–17. Crossref
  66. Zhang, S., Handa-Corrigan, A. and Spier, R.E. (1992) Foaming and media surfactant effects on the cultivation of animal cells in stirred and sparged bioreactors. J Biotechnol 25: 289–306. Crossref
  67. Etoc, A., Delvigne, F., Lecomte, J.P. and Thonart, P. (2006) Foam control in fermentation bioprocess. In Twenty- seventh symposium on biortechnology for fuels and chemicals (McMillan JD, Adney WS, Mielenz JR, Klasson KT, Eds). ABAB Symposium, Human Press, 392–404. Crossref
  68. Al-Masry, W.A., Ali, E.M. and Aqeel, Y.M. (2006) Effect of antifoam agents on bubble characteristics in bubble columns based on acoustic sound measurements. Chem Eng Sci 61: 3610–3622. Crossref
  69. van der Pol, L.A., Bonarius, D., van de Wouw, G. and Tramper, J. (1993) Effect of silicone antifoam on shear sensitivity of hybridoma cells in sparged cultures. Biotechnol Prog 9: 504–509. Crossref
  70. Pauzi, S.M., Ahmad, N., Yahya, M.F. and Arifin, M.A. (2018) The effects of antifoam agent on dead end filtration process. IOP Conf Ser: Mater Sci Eng 358: 012038. Crossref
  71. Ng, K.S. and Gutierrez, L. (1977) Mechanical foam breaker-means for foam control in wastewater treatment. J Water Pollut Control Fed 49: 2310–2317.
  72. Takesono, S., Onodera, M., Yoshida, M., Yamagiwa, K. and Ohkawa, A. (2003) Performance characteristics of mechanical foam-breakers fitted to a stirred-tank reactor. J Chem Technol Biotechnol 78: 48–55. Crossref
  73. Saint-Jalmes, A. and Langevin, D. (2002) Time evolution of aqueous foams: drainage and coarsening. J Phys Condens Matter 14: 9397–9412. Crossref
  74. Takesono, S., Onodera, M., Yamagiwa, K. and Ohkawa, A. (1993) Design and operation of rotating-disk foam- breakers fitted to tower fermenters. J Chem Technol Biotechnol 57: 237–246. Crossref
  75. Vetoshkin, A.G. (2001) Estimating the efficiency of an aerodynamic foam breaker. Theor Found Chem Eng 35: 609–613. Crossref
  76. Vetoshkin, A.G. and Vlasov, A.I. (2002) Self-oscillation in aerodynamic foam breaking. Theor Found Chem Eng 36: 12–15. Crossref
  77. Vetoshkin, A.G. (2003) Modeling of centrifugal rotary plate foam breakers. Theor Found Chem Eng 37: 372–377. Crossref
  78. Gutwald, S. and Mersmann, A. (1997) Mechanical foam breaking – a physical model for impact effects with high speed rotors. Chem Eng Technol 20: 76–84. Crossref
  79. Barigou, M. (2001) Foam rupture by mechanical and vibrational methods. Chem Eng Technol 24: 659–663. Crossref
  80. Morey, M.D., Deshpande, N.S. and Barigou, M. (1999) Foam destabilization by mechanical and ultrasonic vibrations. J Colloid Interface Sci 219: 90–98. Crossref
  81. Rodríguez, G., Riera, E., Gallego-Juárez, J.A., Acosta, V.M., Pinto, A., Martínez, I. and Blanco, A. (2010) Experimental study of defoaming by air-borne power ultrasonic technology. Phys Procedia 3: 135–139. Crossref
  82. Dedhia, A.C., Ambulgekar, P.V. and Pandit, A.B. (2004) Static foam destruction: role of ultrasound. Ultrason Sonochem 11: 67–75. Crossref
  83. Sandor, N. and Stein, H.N. (1993) Foam destruction by ultrasonic vibrations. J Colloid Interface Sci 161: 265– 267. Crossref
  84. Deshpande, N.S. and Barigou, M. (1999) Performance characteristics of novel mechanical foam breakers in a stirred tank reactor. J Chem Technol Biotechnol 74: 979–987. Crossref
  85. Takesono, S., Onodera, M., Toda, K., Yoshida, M., Yamagiwa, K. and Ohkawa, A. (2006) Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter. Bioprocess Biosyst Eng 28: 235– 242. Crossref
  86. Deshpande, N.S. and Barigou, M. (2000) Mechanical suppression of the dynamic foam head in bubble column reactors. Chem Eng Process 39: 207–217. Crossref
  87. Cooke, M., Heggs, P.J., Eaglesham, A. and Housley, D. (2004) Spinning cones as pumps, degassers and level controllers in mechanically stirred tanks. Chem Eng Res Des 82: 719–729. Crossref
  88. Marko, Z. (1985) Mechanical foam breakers and a process for mechanical foam-breaking. United States Patents, US4508546A.
  89. Stocks, S.M., Cooke, M. and Heggs, P.J. (2005) Inverted hollow spinning cone as a device for controlling foam and hold-up in pilot scale gassed agitated fermentation vessels. Chem Eng Sci 60: 2231–2238. Crossref
  90. Haas, P.A. and Johnson, H.F. (1965) Foam columns for countercurrent surface—liquid extraction of surface-active solutes. AIChE J 11: 319–324. Crossref
  91. Liu, Y., Wu, Z., Zhao, B., Li, L. and Li, R. (2013) Enchancing defoaming using the foam breaker with perforated plates for promoting the application of foam fractionation. Sep Purif Technol 120: 12–19. Crossref
  92. Vetoshkin, A.G. and Chagin, B.A. (2002) Analysis of operating conditions for an aerodynamic foam breaker. Theor Found Chem Eng 36: 113–117. Crossref
  93. Cao, P.L., Wang, J., Liu, C.P. and Wang, R. (2013) Numerical simulation of the laval annular mechanical foam breaker for foam drilling. Res J Appl Sci Eng Technol 22: 4145–4151. Crossref
  94. Wang, J.S., Cao, P.L. and Yin, K. (2015) Structure design of and experimental research on a two-stage laval foam breaker for foam fluid recycling. J Environ Biol 36 Spec No: 829–836.
  95. Kang, S., Li, R., Wu, Z., Guo, S. and Gao, Y. (2016) Effective improvement of defoaming efficiency using foam breaker with synthetic sponge cylinder in foam fractionation. Chem Eng Process 106: 26–32. Crossref
  96. Cox, S. and Davies, I.T. (2016) Simulations of quasi- static foam flow through a diverging-converging channel. Korea-Aust Rheol J 28: 181–186. Crossref
  97. Cilliers, J. (2009) Physics-based froth modelling: new developments and applications. Int J Comput Fluid Dyn 23: 147–153. Crossref
  98. Karimi, M., Droghetti, H. and Marchisio, D.L. (2016) Multiscale modeling of expanding polyurethane foams via computational fluid dynamics and population balance equation. Macromol Symp 360: 108–122. Crossref
  99. Karimi, M., Marchisio, D., Laurini, E., Fermeglia, M. and Pricl, S. (2018) Bridging the gap across scales: Coupling CFD and MD/GCMC in polyurethane foam simulation. Chem Eng Sci 178: 39–47. Crossref
  100. Makarytchev, S.V., Langrish, T.A.G. and Fletcher, D.F. (2004) Mass transfer analysis of spinning cone columns using CFD. Chem Eng Res Des 82: 752– 761. Crossref
  101. Chen, S. and Doolen, G.D. (1998) Lattice Boltzmann Method for Fluid Flows. Annu Rev Fluid Mech 30: 329–364. Crossref
  102. Peng, B., Wang, S., Lan, Z., Xu, W., Wen, R. and Ma, X. (2013) Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence. Google Scholar
  103. Bayani, H. and Mirbagheri, S.M.H. (2016) Simulation of foaming and deformation for composite aluminum foams. Iran J Mater Form 3: 38–54. Crossref