Identification of Drug Target Properties and its validation on Helicobacter pylori

  1. Nikita Chordia,
  2. Kapil Lakhawat,
  3. Anil Kumar*

Author Affiliations

  • School of Biotechnology, Devi Ahilya University, Khandwa Road, Indore 452001, INDIA

Can J Biotech, Volume 1, Issue 1, Pages 44-49, DOI: 10.24870/cjb.2017-000101

Received: Oct 14, 2016; Revised: Jan 13, 2017; Accepted: Jan 24, 2017


An analysis of 472 proteins taken from the drug target database and considered as bacterial drug targets has been carried out. A number of sequential properties viz. length, molecular weight, hydrophobicity, cellular localization, transmembrane helices, glycosylation and signal peptide were determined. Based on these properties, a range was set for each property and it was considered that a protein can be a drug target if that protein property comes in the same range. To validate, the method was applied to Helicobacter pylori having 1602 proteins. The properties were calculated for proteins from H. pylori and the range was applied to find the drug target. After analysis of the whole proteome, 5 proteins have been found to have all the properties in the range. The results were cross checked and it has been found that the resultant proteins are also drug targets for other pathogens. It indicated that the sequential properties of successful target help in finding the new drug target for the pathogen.


  1. Levy, S.B. (1998) The challenge of antibiotic resistance. Sci Am 278: 46-53.
  2. Rask-Andersen, M., Almn, M.S. and Schith, H.B. (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10: 579-590. doi:10.1038/nrd3478
  3. Smith, C. (2003) Drug target validation: Hitting the target. Nature 422: 341-347. doi:10.1038/422341a
  4. Hughes, J., Rees, S., Kalindjian, S. and Philpott, K. (2011) Principles of early drug discovery. Br J Pharmacol 162: 12391249. doi:10.1111/j.1476-5381.2010.01127.x
  5. Barh, D., Jain, N., Tiwari, S., D Afonseca, V., Li, L., Ali, A., Santos, A.R., Guimaraes, L.C., Soares, S.D.C., Miyoshi, A., Bhattacharjee, A., Misra, A.N., Silva, A., Kumar, A. and Azevedo, V. (2011) A novel comparative genomics analysis for common drug and vaccine targets in Cornebacterium pseudotuberculosis and other CMN group of human pathogens. Chem Biol Drug Des 78: 73-84. doi:10.1111/j.1747-0285.2011.01118.x
  6. Chordia, N., Sharma, N. and Kumar, A. (2015) An Interactomic approach for Identification of Putative Drug Targets in Listeria monocytogenes. Int J Bioinform Res Appl 11: 315-325.
  7. Yadav, R., Chordia, N., Kumar, A. and Shouche, S. (2015) Identification of Targetable Virulence Factor and Drug Screening For Bacterial Pneumonia. IOSR J Pharm Biol Sci 10: 20-24. doi:10.9790/3008-10212024
  8. Neelapu, N.R., Mutha, N.V. and Akula, S. (2015) Identification of Potential Drug Targets in Helicobacter pylori Strain HPAG1 by in silico Genome Analysis. Infect Disord Drug Targets 15: 106-117. doi:10.2174/1871526515666150724111528
  9. Nammi, D., Srimath-Tirumala-Peddinti, R.C. and Neelapu, N.R. (2016) Identification of drug targets in Helicobacter pylori by in silico analysis: possible therapeutic implications for gastric cancer. Curr Cancer Drug Targets 16: 79-98. doi:10.2174/1568009615666150602143239
  10. Wood, D.W. and Block, K.P. (1998) Helicobacter pylori: a review. Am J Ther 5: 253-261.
  11. Megraud, F., Coenen, S., Versporten, A., Kist, M., Lopez-Brea, M., Hirschl, A.M., Andersen, L.P., Goossens, H. and Glupczynski, Y. (2013) Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 62: 34-42. doi:10.1136/gutjnl-2012-302254
  12. Zhu, F., Shi, Z., Qin, C., Tao, L., Liu, X., Xu, F, Zhang, L., Song, Y., Liu, X., Zhang, J., Han, B., Zhang, P. and Chen, Y. (2012) Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic acids Res 40: D1128-D1136.
  13. Gao, Z., Li, H., Zhang, H., Liu, X., Kang, L., Luo, X., Zhu, W., Chen, K., Wang, X. and Jiang, H. (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 9: 104. doi:10.1186/1471-2105-9-104
  14. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. and Bairoch, A. (2005) Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook (Walker JM, Ed). Humana Press, 571-607. doi:10.1385/1-59259-890-0:571
  15. Kumar, T.A. (2013) CFSSP: Chou and Fasman secondary structure prediction server. Wide Spectrum 1: 15-19.
  16. Hofmann, K and Stoffel, W. (1993) TMbase-A database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374: 166.
  17. Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S.C., Ester, M., Foster, L.J. and Brinkman, F.S. (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608-1615. doi:10.1093/bioinformatics/btq249
  18. Kll, L., Krogh, A. and Sonnhammer, E.L. (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: 1027-1036.
  19. Chauhan, J.S., Rao, A. and Raghava, G.P.S. (2013) In silico platform for prediction of N-, O-and C-glycosites in eukaryotic protein sequences. PLoS One 8: e67008.
  20. Pruitt, K.D., Tatusova, T. and Maglott, D.R. (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35: D61-D65. doi:10.1093/nar/gkl842
  21. He, Q.F., Li, D., Xu, Q.Y. and Zheng, S. (2012) Predicted essential proteins of Plasmodium falciparum for potential drug targets. Asian Pac J Trop Med 5: 352-354.
  22. Dutta, A., Singh, S.K., Ghosh, P., Mukherjee, R., Mitter, S. and Bandyopadhyay, D. (2006) In silico identification of potential therapeutic targets in the human pathogen Helicobacter pylori. In Silico Biol 6: 43-47.
  23. Reddy, G.K., Rao, K.N. and Prasad, P.R. (2011) Identification of drug and vaccine targets in Clostridium botulinum-A by the approach in-silico subtractive genomics. Int J Pharm Stud Res 2: 48-54.
  24. Zbilut, J.P., Colosimo, A., Conti, F., Colafranceschi, M., Manetti, C., Valerio, M., Webber Jr, C.L. and Giuliani, A. (2003) Protein aggregation/folding: the role of deterministic singularities of sequence hydrophobicity as determined by nonlinear signal analysis of acylphosphatase and Aβ(140). Biophys J 85: 3544-3557.
  25. Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105-132.
  26. Ji, Y.Y. and Li, Y.Q. (2010) The role of secondary structure in protein structure selection. Eur Phys J E Soft Matter 32: 103-107. doi:10.1140/epje/i2010-10591-5
  27. Apweiler, R., Hermjakob, H. and Sharon, N. (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta – General Subjects 1473: 4-8.
  28. Scott, M.S., Calafell, S.J., Thomas, D.Y. and Hallett, M.T. (2005) Refining protein subcellular localization. PLoS Comput Biol 1: e66.
  29. Zimmermann, R., Eyrisch, S., Ahmad, M. and Helms, V. (2011) Protein translocation across the ER membrane. Biochim Biophys Acta – Biomembranes 1808: 912-924.
  30. Kaplan, G. (2005). Rational vaccine development–a new trend in tuberculosis control. N Engl J Med 353: 1624-1625. doi:10.1056/NEJMcibr053426
  31. Chandra, S., Ruhela, D., Deb, A. and Vishwakarma, R.A. (2010) Glycobiology of the Leishmania parasite and emerging targets for antileishmanial drug discovery. Expert Opin Ther Targets 14: 739-757.
  32. Yoshida, T., Nasu, H., Namba, E., Ubukata, O. and Yamashita, M. (2012) Discovery of a compound that acts as a bacterial PyrG (CTP synthase) inhibitor. J Med Microbiol 61: 1280-1285. doi:10.1099/jmm.0.046052-0
  33. Docherty, A.J., Crabbe, T., O Connell, J.P. and Groom, C.R. (2003) Proteases as drug targets. In Biochem Soc Symp 70: 147-161. doi:10.1042/bss0700147
  34. Seol, J.H., Woo, S.K., Jung, E.M., Yoo, S.J., Lee, C.S., Kim, K., Tanaka, K., Ichihara, A., Ha, D.B. and Chung, C.H. (1991) Protease Do is essential for survival of Escherichia coli at high temperatures: its identity with the htrA gene product. Biochem Biophys Res Commun 176: 730-736.
  35. Shanmugam, A. and Natarajan, J. (2012) Comparative modeling of UDP-N-acetylmuramoyl-glycyl-D-glutamate-2, 6-diaminopimelate ligase from Mycobacterium leprae and analysis of its binding features through molecular docking studies. J Mol Model 18: 115-125. doi:10.1007/s00894-011-1039-y