Plasmids containing the same origin of replication are useful tools to perform biotechnological studies in Pseudomonas putida U and in E. coli DH10B

  1. Manuel de la Torre,
  2. M. Carmen Humanes,
  3. Elas R. Olivera,
  4. Jos M. Luengo*

Author Affiliations

  • Departamento de Biologa Molecular, Facultades de Veterinaria y de Biologa, Universidad de Len, Len 24071, ESPAA

Can J Biotech, Volume 1, Issue 1, Pages 38-43, DOI: 10.24870/cjb.2017-000104

Received: Feb 03, 2017; Revised: Mar 24, 2017; Accepted: Mar 27, 2017


Plasmids containing the same origin of replication (pBBR1MCS-2 KmR and pBBR1MCS-3 TcR) have been used to express simultaneous and independently different proteins in P. putida U and in E. coli. Thus, when P. putida was transformed with different genetic constructions made in the same plasmid (pBBR1MCS-3 TcR), or with plasmids containing the same replication origin but with different antibiotic resistant genes (KmR and TcR), they co-existed inside the same microbe. Furthermore, when E. coli DH10B was transformed with the plasmids recovered from the recombinant P. putida U, we noticed that all the bacteria isolated from single colonies are resistant to Km and Tc, suggesting that these plasmids were also present in E. coli. This observation facilitates the genetic manipulation of these strains (i.e. avoiding the use of different plasmids in double or multiple complementation experiments), and could be an interesting tool to approach many metabolic and biotechnological studies.


  1. Srivastava, S. (2013) Plasmids: Their biology and functions. In Genetics of Bacteria. Springer, India, 125-151. doi:10.1007/978-81-322-1090-0_6
  2. Smillie, C., Garcilln-Barcia, M.P., Francia, M.V., Rocha, E.P.C. and de la Cruz, F. (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74: 434-452. doi:10.1128/MMBR.00020-10
  3. Novick, R.P. (1987) Plasmid incompatibility. Microbiol Rev 51: 381-395
  4. Wang, D., Gao, Z., Wang, H., Feng, E., Zhu, L., Liu, X. and Wang, H. (2015) Curing both virulent mega-plasmids from Bacillus anthracis wild-type strain A16 simultaneously using plasmid incompatibility. J Microbiol Biotechnol 25: 1614-1620. doi:10.4014/jmb.1503.03083
  5. Velappan, N., Sblattero, D., Chasteen, L., Pavlik, P. and Bradbury, R.M. (2007) Plasmid incompatibility: more compatible than previously thought? Protein Eng Des Sel 20: 309-313.
  6. Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M. and Peterson, K.M. (1995) Four new derivates of the broad-host range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176.
  7. Martnez-Blanco, H., Reglero, A., Rodrguez, L. and Luengo, J.M. (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265: 7084-7090.
  8. Olivera, E.R., Carnicero, D., Garca, B., Minambres, B., Moreno, M.A., Caedo, L., DiRusso, C.C., Naharro, G. and Luengo, J.M. (2001) Two different pathways are involved in the -oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Mol Microbiol 39: 863-874. doi:10.1046/j.1365-2958.2001.02296.x
  9. Olivera, E.R., Carnicero, D., Jodr, R., Minambres, B., Garca, B., Abraham, G.A., Gallardo, A., San Romn, J., Garca, J.L., Naharro, G. and Luengo, J.M. (2001) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3: 612-618. doi:10.1046/j.1462-2920.2001.00224.x
  10. Durfee, T., Nelson, R., Baldwin, S., Plunkett, G.3rd, Burland, V., Mau, B., Petrosino, J.F., Qin, X., Muzny, D.M., Ayele, M., Gibbs, R.A., Csrgo, B., Psfai, G., Weinstock, G.M. and Blattner, F.R. (2008). The complete genome sequence of Escherichia coli DH10B: Insights into the biology of a laboratory workhorse. J Bacteriol 190: 2597-2606. doi:10.1128/JB.01695-07
  11. Herrero, M., De Lorenzo, V. and Timmis, K.N. (1990) Transposon vector containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172: 6557-6567. doi:10.1128/jb.172.11.6557-6567.1990
  12. Arcos, M., Olivera, E.R., Arias, S., Naharro, G. and Luengo, J.M. (2010) The 3,4-Dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in Pseudomonas putida U. Environ Microbiol 12: 1684-1704. doi:10.1111/j.1462-2920.2010.02233.x
  13. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1987) Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor, New York.
  14. Miambres, B., Olivera, E.R., Garca, B., Naharro, G. and Luengo, J.M. (2000) From a short amino acidic sequence to the complete gene. Biochem Biophys Res Commun 272: 477-479.
  15. Miambres, B., Martnez-Blanco, H., Olivera, E.R., Garca, B., Dez, B., Barredo, J.L., Moreno, M.A., Schleissner, C., Salto, F. and Luengo, J.M. (1996) Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. Use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 271: 33531-33538. doi:10.1074/jbc.271.52.33531
  16. Olivera, E.R., Miambres, B., Garca, B., Muiz, C., Moreno, M.A., Ferrndez, A., Daz, E., Garca, J.L. and Luengo, J.M. (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95: 6419-6424.
  17. Arias-Barrau, E., Olivera, E.R., Luengo, J.M., Fernndez, C., Galn, B., Garca, J.L., Daz, E. and Miambres, B. (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186: 5062-5077. doi:10.1128/JB.186.15.5062-5077.2004
  18. Arias-Barrau, E., Sandoval, A., Naharro, G., Olivera, E.R. and Luengo, J.M. (2005) A two-component hydroxylase involved in the assimilation of 3-hydroxyphenyl acetate in Pseudomonas putida. J Biol Chem 280: 26435-26447. doi:10.1074/jbc.M501988200
  19. Arias, S., Olivera, E.R., Arcos, M., Naharro, G. and Luengo, J.M. (2008) Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ Microbiol 10: 413-432. doi:10.1111/j.1462-2920.2007.01464.x
  20. Garca, B., Olivera, E.R., Miambres, B., Fernndez-Valverde, M., Caedo, L.M., Prieto, M.A., Garca, J.L., Martnez M. and Luengo, J.M. (1999) Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J Biol Chem 274: 29228-29241. doi:10.1074/jbc.274.41.29228
  21. Luengo, J.M., Garca, J.L. and Olivera, E.R. (2001) The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39: 1434-1442. doi:10.1046/j.1365-2958.2001.02344.x
  22. Sandoval, A., Arias-Barrau, E., Arcos, M., Naharro, G., Olivera, E.R. and Luengo, J.M. (2007) Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environ Microbiol 9: 737-751. doi:10.1111/j.1462-2920.2006.01196.x
  23. Olivera, E.R., Arcos, M., Naharro, G. and Luengo, J.M. (2010) Unusual PHA biosynthesis. In Plastic from Bacteria: Natural Functions and Applications (Chen GQ, Ed). Microbiol Monographs, Springer, NY, Vol. 14: 133-186.
  24. Obeso, J.I., Maestro, B., Sanz, J., Olivera, E.R. and Luengo, J.M. (2015) The loss of function of PhaC1 is a survival mechanism that counteracts the stress caused by the overproduction of poly-3-hydroxyalkanoates in Pseudomonas putida ?fadBA. Environ Microbiol 17: 3182-3194. doi:10.1111/1462-2920.12753